Identification of disease-related spatial covariance patterns using neuroimaging data.

نویسندگان

  • Phoebe Spetsieris
  • Yilong Ma
  • Shichun Peng
  • Ji Hyun Ko
  • Vijay Dhawan
  • Chris C Tang
  • David Eidelberg
چکیده

The scaled subprofile model (SSM)(1-4) is a multivariate PCA-based algorithm that identifies major sources of variation in patient and control group brain image data while rejecting lesser components (Figure 1). Applied directly to voxel-by-voxel covariance data of steady-state multimodality images, an entire group image set can be reduced to a few significant linearly independent covariance patterns and corresponding subject scores. Each pattern, termed a group invariant subprofile (GIS), is an orthogonal principal component that represents a spatially distributed network of functionally interrelated brain regions. Large global mean scalar effects that can obscure smaller network-specific contributions are removed by the inherent logarithmic conversion and mean centering of the data(2,5,6). Subjects express each of these patterns to a variable degree represented by a simple scalar score that can correlate with independent clinical or psychometric descriptors(7,8). Using logistic regression analysis of subject scores (i.e. pattern expression values), linear coefficients can be derived to combine multiple principal components into single disease-related spatial covariance patterns, i.e. composite networks with improved discrimination of patients from healthy control subjects(5,6). Cross-validation within the derivation set can be performed using bootstrap resampling techniques(9). Forward validation is easily confirmed by direct score evaluation of the derived patterns in prospective datasets(10). Once validated, disease-related patterns can be used to score individual patients with respect to a fixed reference sample, often the set of healthy subjects that was used (with the disease group) in the original pattern derivation(11). These standardized values can in turn be used to assist in differential diagnosis(12,13) and to assess disease progression and treatment effects at the network level(7,14-16). We present an example of the application of this methodology to FDG PET data of Parkinson's Disease patients and normal controls using our in-house software to derive a characteristic covariance pattern biomarker of disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantifying Significance of Topographical Similarities of Disease-Related Brain Metabolic Patterns

Multivariate analytical routines have become increasingly popular in the study of cerebral function in health and in disease states. Spatial covariance analysis of functional neuroimaging data has been used to identify and validate characteristic topographies associated with specific brain disorders. Voxel-wise correlations can be used to assess similarities and differences that exist between c...

متن کامل

Identification of Structural Defects Using Computer Algorithms

One of the numerous methods recently employed to study the health of structures is the identification of anomaly in data obtained for the condition of the structure, e.g. the frequencies for the structural modes, stress, strain, displacement, speed,  and acceleration) which are obtained and stored by various sensors. The methods of identification applied for anomalies attempt to discover and re...

متن کامل

Independent Component Analysis-Based Identification of Covariance Patterns of Microstructural White Matter Damage in Alzheimer’s Disease

The existing DTI studies have suggested that white matter damage constitutes an important part of the neurodegenerative changes in Alzheimer's disease (AD). The present study aimed to identify the regional covariance patterns of microstructural white matter changes associated with AD. In this study, we applied a multivariate analysis approach, independent component analysis (ICA), to identify c...

متن کامل

Age-related changes in brain structural covariance networks

Previous neuroimaging studies have suggested that cerebral changes over normal aging are not simply characterized by regional alterations, but rather by the reorganization of cortical connectivity patterns. The investigation of structural covariance networks (SCNs) using voxel-based morphometry is an advanced approach to examining the pattern of covariance in gray matter (GM) volumes among diff...

متن کامل

Lagged covariance structure models for studying functional connectivity in the brain.

Most cognitive processes are supported by large networks of brain regions. To describe the operation of these networks, it is critical to understand how individual areas are functionally connected. Here, we establish a statistical framework for studying effective and functional brain connectivity, using data obtained with a relatively new neuroimaging method, the event-related optical signal (E...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of visualized experiments : JoVE

دوره 76  شماره 

صفحات  -

تاریخ انتشار 2013